

Tomo Lithographic Molding

a Breakthrough Manufacturing Process for

Large Area Micro Mechanical Systems

Michael Appleby, CEO, Mikro Systems, Inc.

Earth-Sun Technology Conference 2005

Presentation outline

- Background
- Process illustration: Tomo Lithographic Molding™
- Design variables
- TLM™ process advantages
- MEMS process comparison
- Process application: Large Area Micro Mechanical Systems™
- LAMMS™ microstructures
- LAMMS™ product example
- Program-level implications
- Future applications

Background

- Rotating modulation collimators
 - RHESSI; Dr. Brian Dennis
- Multi-grid modulation collimators
 - Phase II SBIR (ESA Solar Orbiter); Dr. Brian Dennis
- Sub-millimeter wave feed-horn arrays
 - Sub-millimeter focal plane arrays;
 Dr. Harvey Moseley and Dr. Edward Wollack
- Radiation collimators and detectors
 - DOD, DOE, NIH, and commercial customers

Tier 1 supplier of microsystems and devices.

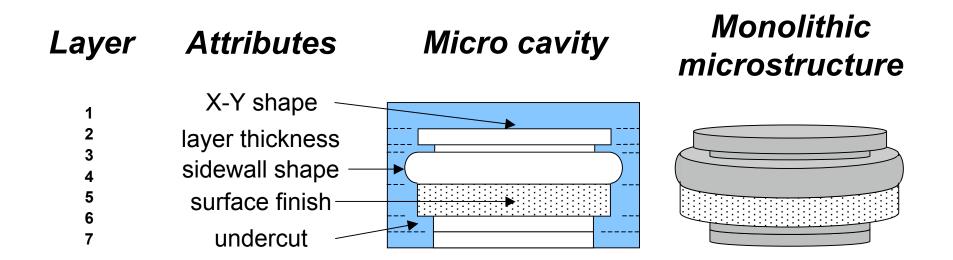
Process illustration

<u>Tomo Lithographic Molding</u> (TLM™)

- Micro-machine layers

 (lithographic process)

 (precision stack-
 - 2 Produce master tool
 (precision stack-lamination)

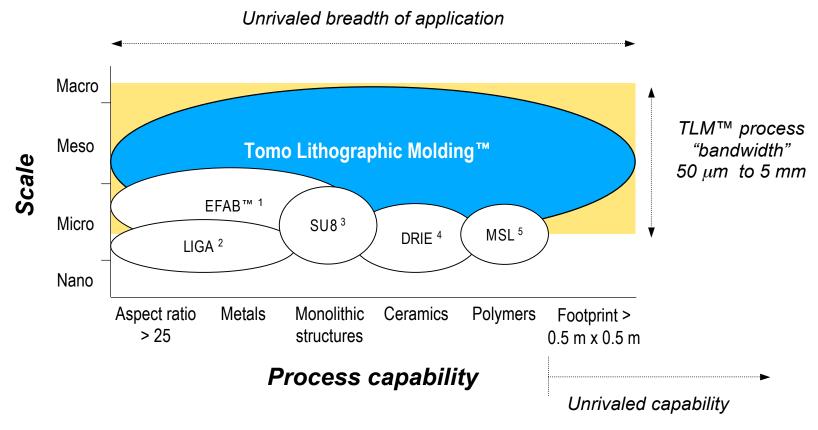

 (negative of master tool)
 - 3 Derive tool (s)
 (negative of master tool)
- 4 3D, monolithic solid (positive of derived tool)

TLM™ is a robust manufacturing process.

TLM™ design variables

Enables 3D design agility.

TLM ™ process advantages

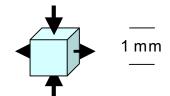

- Complex 3D fabrication (microns to millimeters)
- High aspect ratio
- Multi-functional materials
- Monolithic structures
 - reduce part count
 - reduce process stages
- Large area capability
- Non-planar and conformal configurations

Cost effective manufacturing process.

MEMS process comparison

¹ Electro Chemical Fabrication; ² Lithographie Galvanoformung Abformung; ³ SU8 Photoresist; ⁴ Deep Reactive Ion Etching; ⁵ Micro Stereo Lithography

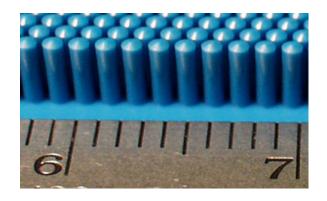
TLM™ is a highly versatile manufacturing process.



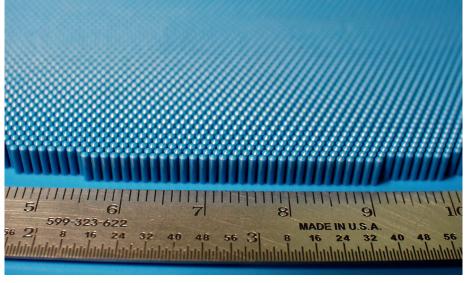
TLM ™ process application

<u>Large Area Micro Mechanical Systems</u> (LAMMS™)

- Finite Element Analysis driven
- Custom microstructure per FEA element

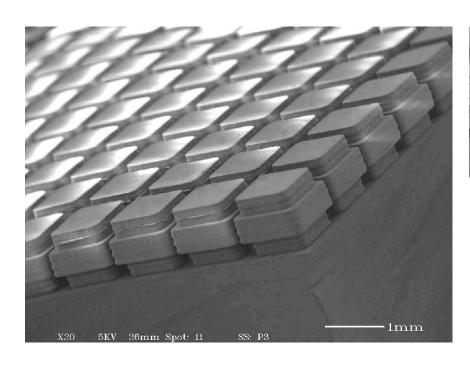

- Variable geometry and distribution
- Variable arrays and motifs
- Multi-ply, laminated structures
- Multi-functional materials; synthetic composites
- Suitable for embedded sensors and devices

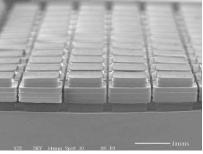
Array custom microstructures over large areas.

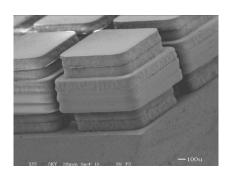

LAMMS™ microsystem

Polymer micro pillar array

- 45 cm diameter footprint
- 131,589 micro pillars
- 0.95 diameter x 3.25 mm pillars
- staggered rows and columns (maximum density)
- pitch frequency 1.0 mm (50 μm spacing)
- 0° to 2.436° array (increments of 1 arc second / pillar from origin)

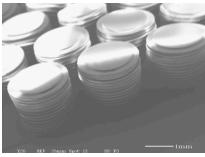



Large area capability.



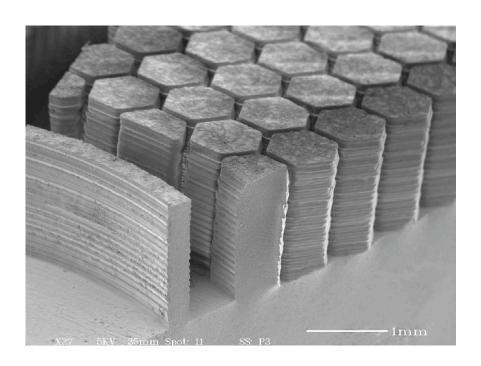
LAMMS™ microstructure

3D micro pillars


- 1,200 pillars
- top and base sections 870 x 870 μm
- center section 1.035 x 1.035 mm
- ceramic, alumina oxide

LAMMS™ microstructure

Corrugated microstructure array


- 1,020 microstructures
- 54 circular undercuts on each microstructure (75 μm width x 215 μm depth)
- height = 8.30 mm
- silicone

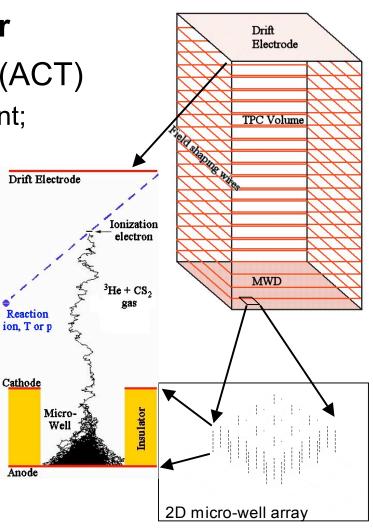
High surface area.

LAMMS™ microstructure

Hexagonal micro pillar array

- 1.5 X 0.5 mm
- 0.075 mm spacing
- 13:1 aspect ratio (space)
- PMMA

Monolithic structures.


LAMMS™ product example

3D charged particle track imager

- Advanced Compton Telescope (ACT)
 - 2D micro-well detector development;
 Dr. Stan Hunter
- Gamma-ray astronomy and homeland security applications
- Large area detector (m²)
- TLM™ derived, dielectric 2D micro-well array
- Multi-layer construction

Multifunctional structures.

Program-level implications

Rapid systems development and prototyping

- high fidelity replication of FEA-derived models
- accelerate development schedules
- cost effective tooling
- precisely define design limits

Reliable product realization

- scalable process
- well-defined process control parameters and control limits
- compatible with conventional shop practices

Reliable; high quality; low recurring costs.

Future applications

LAMMS™ Aero and astronautics

- Synthetic composite aero structures
- Embedded sensors and devices
- Structural health monitoring
- Thermal management systems
- Aero and fluid dynamics management
- Radiation shielding and detection

Mission Success.